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Results of computational trials of recently developed iterative techniques for finding 
positive solutions of boundary-value problems for the Thomas-Fermi and generalized 
Emden-Fowler equations are presented. Proofs of convergence of iterative techniques have 
been established in other papers by the authors. The proofs, and therefore the iterative 
techniques, are based upon solutions of linear Sturm-Liouville problems related to the original 
nonlinear problems. 

1. INTRODUCT10~ 

Iterative techniques for finding positive solutions of boundary-value problems for 
Thomas-Fermi and generalized Emden-Fowler equations have recently been 
developed by two of the authors [ 1 l-141. It is the purpose of this article to present 
results of our computational implementation of the mathematical techniques 
developed in [I l-141. 

In Section 2 the iteration scheme for the Thomas-Fermi equation is described and 
the convergence results proved in [ 11, 121 are stated. In Section 3 the iteration 
scheme for the generalized Emden-Fowler equation is described and the convergence 
results proved in [ 13, 141 are stated. In Section 4, the implementational technique is 
described and the computational results which were obtained when the iteration 
schemes were applied to various examples are presented. 
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2. THE THOMAS-FERMI EQUATION 

In appropriate units the Thomas-Fermi equation, used in atomic calculations, may 
be written 

y”(X) = x- Y’(y(x))““, x > 0. (1) 

There are three sets of boundary values of interest for this equation: the neutral atom 
with Bohr radius b > 0 

Y(0) = 1, by’(b) = y(b); (la) 

the isolated neutral atom 

y(O)= 1, lim y(x) = 0; (lb) X-tfCC 

and the ionized atom 

Y(0) = 1, y(a) = 0, cl > 0. (lc) 

The importance of the Thomas-Fermi equation in physics may be inferred from 
the review articles [9, 161. Because of this importance, solution techniques for the 
boundary-value problems (1 a), (1 b), and (lc) and other mathematical aspects of 
Eq. (l), with or without the boundary conditions, have been and continue to be 
subjects of research. Briefly, the solution history is as follows: Thomas used Adam’s 
method of numerical integration of the differential equation to obtain approximate 
solutions to problem (lb), while Fermi used graphical methods. In fact, Fermi 
obtained the approximation for small x of 

y(x) = 1 - 1.58x + (4/3)x”’ + ... . 

Baker [ 21 later improved this result to 

y(x) = 1 + b,x + b3x3’2 + ... 

with b, = -1.588588... . At about the same time, Sommerfeld [23] developed an 
approximate solution to (1 b): 

Y(X) = Y,(X){1 + b1(41~3”31163~ 

where 1,) L2 are zeros of the polynomial 2’ + 713. - 6, A, > 0 > 1,) and 

y,(x) = 144/x3. 

Sommerfeld’s approximation is quite accurate for large x but underestimates the 
solution near the origin [7]. Analogue computers have been used to find numerical 
solutions 161. More recently Ramnath [ 191 has used a technique known as multiple 
scales to obtain an approximate solution for (lb). 
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Since all three problems (la), (lb), and (lc) have the same boundary conditions at 
zero, much computational use has been made of the series expension 

which is regarded as semiconvergent [8]. The value of b,, the slope of y at the origin, 
falls into three classes: b, < -1.588 . . . . b, = -1.588 . . . . and b, > -1.588... which 
correspond respectively to solutions of problem (la), (lb), and (1~). Hille [ 101 
answers questions concerning the convergence of this latter series. 

Other mathematical work that has been done includes the early work of 
Mambriani [ 151 and Scorza-Dragoni [22] in which the existence and uniqueness of 
the solution to problem (lb) was established, and the more recent work of Reid [20] 
and Reid and Depuy (211. The work of Ramnath [ 191, Reid 1201, and Reid and 
Depuy [2 1 ] also applies to the more general Emden-type equations. Most recently 
Mooney [ 17, 181 has shown how to transform the Thomas-Fermi problems to 
problems amenable to solution by monotone iterations of Picard and Newton type. 

In our approach we consider the nonlinear eigenvalue problem 

u”(X) = ;tx - “2 u3’2(x), o<x< 1, 

with either of the boundary conditions 

-au(O) + u’(0) = 0, -u(l)+u’(l)=O, 

-au(O) + u’(0) = 0, U(l)=0 

(2) 

(24 

WI 

and where the solution is normalized by u(0) = 1. For the case of the neutral atom 
with Bohr radius b, we have the result [ 11, Theorem 11: 

THEOREM. For a > -1, let uO(x) = 1 + ax and f,(x) = u:“(x). For each 
k = 1, 2,..., /et (uk, I,) denote rhe positive solution of 

u”(X) - Lx-“*f,&,(x) u(x) = 0, 0 ( x < 1, 

-au(O) + u’(0) = 0, -U(l) + u’(l) = 0, 
(3) 

where u&) is normalized by z+(O) = 1 and &(x) = U)“(X). Then U,(X) < Us, 
0 < x < 1, k = 1, 2 ,..., and 

u2(x) < u.,(x) < “* < U2,k+2(X) < U2k+ I(x) < *” < u3(x) < u,(x), o<x<l. 

Moreover, there is a positive solution (A, u) of (2a) such that as k + co, I, + A and 
uk(x)+ u(x) uniformly on [0, 11. In addition, by means of the substitution 
y(x) = u(A-Y3x), b = IY3, y is a solution of (1) and (la). 

For the ionized atom case (lc) we have the result 112, Theorem 1 I: 
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THEOREM. For a < -1, let z+,(x) = X,(x)( 1 + ax), 0 < x < 1, where I = [ 0, -a ’ ] 
and X,(x) is the characteristic function of I. Let p0 = 1 - uy’. For n > 1 let (u,,, v,,) 
be the unique positive solution of 

u”(X) - A2x-“2u(x) + vx-“Zpn_ l(X) u(x) = 0, 

-au(O) + u’(0) = 0, u(l)=O, 
(4) 

where u, is normalized by u,(O) = 1, A is chosen so that v, = A2, and p,, = 1 - ufi’, 
(Thus for each n > 1, uz = v,,x~“~u~~,(x) u,(x), 0 < x < 1.) Then 

0 < v2 < v, < "' < V2k+2 < *" < V2k+, < *" < vj < v, 

and 

u&) < 4(x) < u,(x) < “’ < UZk+&) < “’ < U2,++ ,(x) < “’ < t+(x) < u,(x). 

Moreover, there is a positive solution solution (v, u) of (2b) such that as n + +oo, 
v, + v and u,(x) -+ u(x) uniformly in [0, 11. In addition, by means of the substitution 
y(x) = u(Vy3x), a = iJ3, y(x) is a solution of (lc). 

For the isolated neutral atom case (lb) we have the result [ 12, Sect. 41: 

As a -+ -co, the eigenvalues v from (3) increase to +co. Since a = v~‘~, a + +co 
and the scheme for solving (lc) furnishes a solution scheme for (lb). In particular, 
denoting the solution of (lc) as y,(x), y,(x) converves uniformly on (0, +co) to 
y,(x), the solution of (lb). 

We note that the iterative techniques require solution of a sequence of linear 
Sturm-Liouville problems, with the weight function changing at each stage of the 
iteration. This makes our technique slower than Picard- or Newton-type methods. 
This is also characteristic of our iterative technique for the generalized 
Emden-Fowler equations which is now presented. 

3. GENERALIZED EMDEN-FOWLER EQUATIONS 

The Emden-Fowler equation is 

(x%‘(x))’ + x”vyx> = 0, x > 0, (5) 

when y > 0, and p, u, y are real numbers. For instance (5) with p = 2, u = 2, and 
y = 1.5 or 2.5 yields the Lane-Emden equation. The theory of (5) was developed by 
Fowler in a series of papers bridging the years 1914 to 1931. For more historical 
comments one should consult the review article by Wong [24]. 

The generalized Emden-Fowler equation is 

(P(X) v’(x)>’ + q(x) qx) = 0, 
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where p(x) is absolutely continuous and positive and q(x) continuous and 
nonnegative. This equation may, in turn, by reduced by means of a Liouville transfor- 
mation to 

y”(X) + a(x) y”(x) = 0. (6) 

The problem we consider is 

u”(X) + AZ(x) u”(x) = 0, x E (0, 11, 
au(O) - Pu’(O) = 0, (7) 

yu(l)+6u’(l)=O, 

where v # 0 and vf 1. If u is a solution of (7), then y(x) = I-L’lL~“)~(x) is a solution 
of 

y”(X) + a(x) y”(x) = 0, x E (0, 11, 

ay(O) -/w(O) = 0, 

w( 1) + 6y’( 1) = 0. 

(8) 

Thus the study of the eigenvalue problem (7) yields information about the boundary- 
value problem (8). 

The Emden-Fowler equation arises in various applications in mechanics, nuclear 
physics, gasdynamics, stellar structures, and chemically reacting systems. Recently, 
the eigenvalue problem (7) has arisen in the study of cross-field diffusion in toroidal 
multipole plasmas [3,4]. In this instance A corresponds to a separation constant and 
a(x) to the geometry of the problem. In [4] Berryman has used an iterative technique 
of (essentially) Picard type which has worked well for cases of interest. Attempts to 
apply monotonic methods have not met with success (a unified account of monotone 
methods is available in Amann [ 1 I). 

Our results for (7) differ depending on whether v > 1 (called the superlinear case) 
or v < 1 (called the sublinear case). In both cases we require: 

(1) a(x) is positive and continuous on (0, l), 

(2) VP + ya + a6 # 0, 

(3) (a) a, P, Y, 6 > 0, or 
(b) a > 0, /3 > 0, 6 > 0, 0 < y < -ad/(a + P), or 

(c) P > 0, y > 0, 6 > 0, 0 < a < -y&y + 6). 

For the superlinear case we have the result [ 13 ]: 
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THEOREM. Let a(x) be in L’(0, 1) and L+,(X) = lax + /.I. Define the sequence 
@k, qJ, k = 1, L.., as the positive eigenpair of 

u”(x) + La(x) $1 t(x) u(x) = 0, O<x<l, 

au(O) - @l’(O) = 0, (9) 

yu(1) + SU’(1) = 0 

normalized by /?u,JO) + au;(O) = sign P(a’ + /I’). (sign p = 1 if /I > 0, -1 if j3 < 0.) 
There is a positive solution (A, u) of (9) such that as k + +a~, lk + A and uk + u 
uniformly on [0, 11. Moreover, the convergence is monotone: 

0<1,</I,<.**<&<*..A, 

U”(X) > u,(x) > . *. > u/Jx) > * f * > u(x) > 0, &O, o<x< 1. 

For the sublinear case we have [ 141: 

THEOREM. Let a(x) be such that for some E > 0 

-c 

I x’.-’ 
a(x)dx < co, 

"0 

i’ (I -x)“-‘a(x)dx< 03, 
“E 

and let uo(x) = ]ax + p]. Define the sequence (L,, uk), k = 1, 2,..., as the positive 
eigenpair of 

zP(x) + Aa u;l :(x) u(x) = 0, o<x< 1, 

au(O) - Pu’(O) = 0, 

yu(1) + SU’(1) = 0 

normalized by auk(O) + au;(O) = sign&a’ +p’). (sign/3 = 1 if p > 0, -1 if p < 0.) 
There is a positive solution (A, u) of (9) such that as k -+ +co, kk -+A and uk + u 
uniformly on [0, 11. Moreover the convergence is alternating monotone in that 

and 

uo(x) > q(x) > ..a > u(x) > ..* > l+(x) > u,(x) > 0, o<x< 1. 
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4. IMPLEMENTATION 

In each technique, we are required to calculate in each iterative step a solution of a 
Sturm-Liouville problem where the weight function is determined by the solution in 
the previous iterative step. This solution is calculated using the SLEIGN Code [ 3 ]. 
At each step the calculated solution is approximated by a polynomial to a sufficient 
degree of accuracy, so that it may be input, in the weight function at the next step, in 
SLEIGN. 

More specifically, consider the implementation for the superlinear generalized 
Emden-Fowler problem (other implementations are almost the same). All necessary 
parameters a, /3, y, 6, v and parameters for SLEIGN are input and a(x) is entered as a 
subroutine or as tabulated data on cards. In this latter case a(x) is approximated by 
Legendre polynomials on [0, I]. Since ax + /I is of one sign, uO(x) is calculated as 
ax + ,fI or -ax -/I. SLEIGN then calculates the solution to 

u”(X) + Aa u;- ‘(x) u(x) = 0, 

au(O) -#&d(O) = 0, 

yu( 1) + Su’( 1) = 0. 

The calculated solution u,(x) is given by SLEIGN at a specified number of points in 
[O, 11. We used 100 equally spaced points. After u,(x) has been calculated, it is 
normalized by our normalization 

/h,(O) + a&(O) = sign /3(a' + p'). 

(Note: SLEIGN returns u’,(O).) Then u,(x) is approximated by Legendre polynomials 
and SLEIGN is used to calculate the solution to 

u” + la(x) q’(x) u(x) = 0, 

au(O) = /3u'(O) = 0, 

yu( 1) + Su’( 1) = 0; 

calling this solution u*(x), we proceed as before with u,(x); we obtain u,(x), Us,.... 
similarly. 

When the convergence is alternating montone, the error in approximation to the 
true solution may be found a posteriori by subtracting the two most recent solutions. 
This is illustrated in the examples. For the strictly monotone convergence our 
stopping criterion was based upon maximum difference of successive iterates. In the 
examples below all calculations were made in double precision arithmetic on the 
Amdahl 47O/V6 at Texas A&M University. 

EXAMPLE 1. Thomas-Fermi (neutral atom). Note that a is simply the initial 
slope of UJX) for k = 1, 2,... . We compare our results with those of Baker [ 1 ] for the 
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calculation of the minimal ordinate. With an initial slope of a = -0.62221 Baker 
calculates the minimal ordinate as 0.97950 occurring at x = 1.0. We found a minimal 
value of 0.980076 at x = 1.0. Similarly, for a = -0.65 170 we agree with Baker that 
the minimal ordinate occurs at 1.1. Our value for the minimal ordinate is 0.977474 
and Baker’s is 0.97636. 

To illustrate the alternating monotonicity we list A,, ~~(0.495) and yk( 1) for the 
solution of (2) when a = 0. 

Iteration (k) Ak Yk (o.495) Y,(l) 

1 0.9024 1.4379 2.3878 
1 0.7325 1.3617 2.1977 
3 0.7518 1.3699 2.2168 
4 0.7497 1.3690 2.2149 
5 0.74993 1.36912 2.2152 
6 0.7499 1 1.36911 2.2151 

EXAMPLE 2. Thomas-Fermi (ionized atom). We list the solution values for 
a = -2. The alternating monotonicity in the iterations is the same as in Example 2, 
so we omit illustration of that. 

A= 1.11274 
X Y(X) 

0 1 
0.1 0.845949 
0.2 0.720035 
0.3 0.610595 
0.4 0.5 12327 
0.5 0.42105 1 
0.6 0.333707 
0.7 0.248356 
0.8 0.164177 
0.9 0.018473 
1.0 0 

The maximum error as determined a posteriori is 1 x 10-6. This was achieved with 
eight iterations. 

EXAMPLE 3. Generalized Emden-Fowler (superlinear case). 

y”(X) t )Ly3(x) = 0, 

y(0) = y( 1) = 0. 

The actual solution of this problem involves an elliptic sine function, whose values 
can be calculated using tables. The initial function is z+,(x) = x. Our normalized 
results for 18 iterations (11.27 sets) are tabulated below. The solution is symmetric 
about x= l/2. 
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X Computed Solution Actual Solution 

0 0 0 
0.1 0.09636 0.0996 1 
0.2 0.19981 0.19790 
0.3 0.29201 0.28879 
0.4 0.35465 0.35498 
0.5 0.37675 0.38025 

1 = 95.107 

To illustrate the monotonicity we trace some calculated values of Lk and ~~~(0.3) 

Iteration 4 Yk(O.3) 

1 76.962 0.299955 1 
5 92.871 0.292636 1 

10 95.029 0.2920336 
15 95.105 0.2920146 
17 95.107 0.2920139 
18 95.107 0.2920138 

EXAMPLE 4. Generalized Emden-Fowler (sublinear case). 

L”‘fA(X(l -x)]4y+=o, 

y(0) - 2y’(O) = 0, 

J’(1) - 4$(l) = 0. 

The calculated solution, obtained in six iterations (10.7 sets) was, with our nor 
malization: 

1 = 1096.6781 with Ierror < 0.0012 

X J’(X) 

0 2. 
0.1 2.0997 10 
0.2 2.199992 
0.3 2.298 103 
0.4 2.391715 
0.5 2.479489 
0.6 2.561077 
0.7 2.6371 17 
0.8 2.709237 
0.9 2.780052 
1.0 2.853 167 
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The maximum error in the values for Y is 2 X lo- ‘. To illustrate the alternating 
character of the iteration we trace the calculated values of A, and ~~(0.3). 

Iteration 4 Yk(O.3) 

1 1129.6870 2.29801532 
2 1096.0188 2.29814055 
3 1096.8602 2.29810146 
4 1096.6715 2.29810326 
5 1096.6792 2.298 10302 
6 1096.678 1 2.298 10303 
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